A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles.
نویسندگان
چکیده
The embryonic skin of Xenopus tadpoles serves as an experimental model system for mucociliary epithelia (MCE) such as the human airway epithelium. MCEs are characterized by the presence of mucus-secreting goblet and multiciliated cells (MCCs). A third cell type, ion-secreting cells (ISCs), is present in the larval skin as well. Synchronized beating of MCC cilia is required for directional transport of mucus. Here we describe a novel cell type in the Xenopus laevis larval epidermis, characterized by serotonin synthesis and secretion. It is termed small secretory cell (SSC). SSCs are detectable at early tadpole stages, unlike MCCs and ISCs, which are specified at early neurulation. Subcellularly, serotonin was found in large, apically localized vesicle-like structures, which were entirely shed into the surrounding medium. Pharmacological inhibition of serotonin synthesis decreased the velocity of cilia-driven fluid flow across the skin epithelium. This effect was mediated by serotonin type 3 receptor (Htr3), which was expressed in ciliated cells. Knockdown of Htr3 compromised flow velocity by reducing the ciliary motility of MCCs. SSCs thus represent a distinct and novel entity of the frog tadpole MCE, required for ciliary beating and mucus transport across the larval skin. The identification and characterization of SSCs consolidates the value of the Xenopus embryonic skin as a model system for human MCEs, which have been known for serotonin-dependent regulation of ciliary beat frequency.
منابع مشابه
Agonistic and antagonistic drugs directed against components of the serotonin pathway present valuable tools to elucidate functional roles of serotonin in different model organisms
The embryonic skin of Xenopus tadpoles serves as an experimental model system for mucociliary epithelia (MCE) such as the human airway epithelium. MCEs are characterized by the presence of mucus-secreting goblet and multiciliated cells (MCCs). A third cell type, ion-secreting cells (ISCs), is present in the larval skin as well. Synchronized beating of MCC cilia is required for directional trans...
متن کاملATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles
During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516-527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus development. Here ...
متن کاملmicroRNAs and cilia
Cilia are cell protrusions containing an axoneme of microtubules. There are two types of cilia: non-motile cilia which mediate signaling perception, and motile cilia which are required for cell motility and extracellular fluid movement. Mucociliary epithelia contain multiciliated cells (MCCs) that project hundreds of motile cilia from their apical surface. These cilia beat in a coordinate fashi...
متن کاملDevelopment and validation of a method of cilia motility analysis for the early diagnosis of primary ciliary dyskinesia.
BACKGROUND Primary ciliary dyskinesia (PCD) is a clinically uniform entity, but cilia motility and structure can vary between patients, making the diagnostic difficult. The aim of this study was to evaluate the sensitivity and specificity in diagnosing PCD of a system of high-resolution digital high-speed video analysis with proprietary software that we developed for analysis of ciliary motilit...
متن کاملContinuous mucociliary transport by primary human airway epithelial cells in vitro.
Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 141 7 شماره
صفحات -
تاریخ انتشار 2014